the-tip-top-backend/node_modules/@noble/hashes/src/sha3-addons.ts

500 lines
18 KiB
TypeScript

/**
* SHA3 (keccak) addons.
*
* * Full [NIST SP 800-185](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf):
* cSHAKE, KMAC, TupleHash, ParallelHash + XOF variants
* * Reduced-round Keccak [(draft)](https://datatracker.ietf.org/doc/draft-irtf-cfrg-kangarootwelve/):
* * 🦘 K12 aka KangarooTwelve
* * M14 aka MarsupilamiFourteen
* * TurboSHAKE
* * KeccakPRG: Pseudo-random generator based on Keccak [(pdf)](https://keccak.team/files/CSF-0.1.pdf)
* @module
*/
import { Keccak, type ShakeOpts } from './sha3.ts';
import {
abytes,
anumber,
type CHashO,
type CHashXO,
createOptHasher,
createXOFer,
Hash,
type HashXOF,
type Input,
toBytes,
u32,
} from './utils.ts';
// cSHAKE && KMAC (NIST SP800-185)
const _8n = BigInt(8);
const _ffn = BigInt(0xff);
// NOTE: it is safe to use bigints here, since they used only for length encoding (not actual data).
// We use bigints in sha256 for lengths too.
function leftEncode(n: number | bigint): Uint8Array {
n = BigInt(n);
const res = [Number(n & _ffn)];
n >>= _8n;
for (; n > 0; n >>= _8n) res.unshift(Number(n & _ffn));
res.unshift(res.length);
return new Uint8Array(res);
}
function rightEncode(n: number | bigint): Uint8Array {
n = BigInt(n);
const res = [Number(n & _ffn)];
n >>= _8n;
for (; n > 0; n >>= _8n) res.unshift(Number(n & _ffn));
res.push(res.length);
return new Uint8Array(res);
}
function chooseLen(opts: ShakeOpts, outputLen: number): number {
return opts.dkLen === undefined ? outputLen : opts.dkLen;
}
const abytesOrZero = (buf?: Input) => {
if (buf === undefined) return Uint8Array.of();
return toBytes(buf);
};
// NOTE: second modulo is necessary since we don't need to add padding if current element takes whole block
const getPadding = (len: number, block: number) => new Uint8Array((block - (len % block)) % block);
export type cShakeOpts = ShakeOpts & { personalization?: Input; NISTfn?: Input };
// Personalization
function cshakePers(hash: Keccak, opts: cShakeOpts = {}): Keccak {
if (!opts || (!opts.personalization && !opts.NISTfn)) return hash;
// Encode and pad inplace to avoid unneccesary memory copies/slices (so we don't need to zero them later)
// bytepad(encode_string(N) || encode_string(S), 168)
const blockLenBytes = leftEncode(hash.blockLen);
const fn = abytesOrZero(opts.NISTfn);
const fnLen = leftEncode(_8n * BigInt(fn.length)); // length in bits
const pers = abytesOrZero(opts.personalization);
const persLen = leftEncode(_8n * BigInt(pers.length)); // length in bits
if (!fn.length && !pers.length) return hash;
hash.suffix = 0x04;
hash.update(blockLenBytes).update(fnLen).update(fn).update(persLen).update(pers);
let totalLen = blockLenBytes.length + fnLen.length + fn.length + persLen.length + pers.length;
hash.update(getPadding(totalLen, hash.blockLen));
return hash;
}
const gencShake = (suffix: number, blockLen: number, outputLen: number) =>
createXOFer<Keccak, cShakeOpts>((opts: cShakeOpts = {}) =>
cshakePers(new Keccak(blockLen, suffix, chooseLen(opts, outputLen), true), opts)
);
// TODO: refactor
export type ICShake = {
(msg: Input, opts?: cShakeOpts): Uint8Array;
outputLen: number;
blockLen: number;
create(opts: cShakeOpts): HashXOF<Keccak>;
};
export type ITupleHash = {
(messages: Input[], opts?: cShakeOpts): Uint8Array;
create(opts?: cShakeOpts): TupleHash;
};
export type IParHash = {
(message: Input, opts?: ParallelOpts): Uint8Array;
create(opts?: ParallelOpts): ParallelHash;
};
export const cshake128: ICShake = /* @__PURE__ */ (() => gencShake(0x1f, 168, 128 / 8))();
export const cshake256: ICShake = /* @__PURE__ */ (() => gencShake(0x1f, 136, 256 / 8))();
export class KMAC extends Keccak implements HashXOF<KMAC> {
constructor(
blockLen: number,
outputLen: number,
enableXOF: boolean,
key: Input,
opts: cShakeOpts = {}
) {
super(blockLen, 0x1f, outputLen, enableXOF);
cshakePers(this, { NISTfn: 'KMAC', personalization: opts.personalization });
key = toBytes(key);
abytes(key);
// 1. newX = bytepad(encode_string(K), 168) || X || right_encode(L).
const blockLenBytes = leftEncode(this.blockLen);
const keyLen = leftEncode(_8n * BigInt(key.length));
this.update(blockLenBytes).update(keyLen).update(key);
const totalLen = blockLenBytes.length + keyLen.length + key.length;
this.update(getPadding(totalLen, this.blockLen));
}
protected finish(): void {
if (!this.finished) this.update(rightEncode(this.enableXOF ? 0 : _8n * BigInt(this.outputLen))); // outputLen in bits
super.finish();
}
_cloneInto(to?: KMAC): KMAC {
// Create new instance without calling constructor since key already in state and we don't know it.
// Force "to" to be instance of KMAC instead of Sha3.
if (!to) {
to = Object.create(Object.getPrototypeOf(this), {}) as KMAC;
to.state = this.state.slice();
to.blockLen = this.blockLen;
to.state32 = u32(to.state);
}
return super._cloneInto(to) as KMAC;
}
clone(): KMAC {
return this._cloneInto();
}
}
function genKmac(blockLen: number, outputLen: number, xof = false) {
const kmac = (key: Input, message: Input, opts?: cShakeOpts): Uint8Array =>
kmac.create(key, opts).update(message).digest();
kmac.create = (key: Input, opts: cShakeOpts = {}) =>
new KMAC(blockLen, chooseLen(opts, outputLen), xof, key, opts);
return kmac;
}
export const kmac128: {
(key: Input, message: Input, opts?: cShakeOpts): Uint8Array;
create(key: Input, opts?: cShakeOpts): KMAC;
} = /* @__PURE__ */ (() => genKmac(168, 128 / 8))();
export const kmac256: {
(key: Input, message: Input, opts?: cShakeOpts): Uint8Array;
create(key: Input, opts?: cShakeOpts): KMAC;
} = /* @__PURE__ */ (() => genKmac(136, 256 / 8))();
export const kmac128xof: {
(key: Input, message: Input, opts?: cShakeOpts): Uint8Array;
create(key: Input, opts?: cShakeOpts): KMAC;
} = /* @__PURE__ */ (() => genKmac(168, 128 / 8, true))();
export const kmac256xof: {
(key: Input, message: Input, opts?: cShakeOpts): Uint8Array;
create(key: Input, opts?: cShakeOpts): KMAC;
} = /* @__PURE__ */ (() => genKmac(136, 256 / 8, true))();
// TupleHash
// Usage: tuple(['ab', 'cd']) != tuple(['a', 'bcd'])
export class TupleHash extends Keccak implements HashXOF<TupleHash> {
constructor(blockLen: number, outputLen: number, enableXOF: boolean, opts: cShakeOpts = {}) {
super(blockLen, 0x1f, outputLen, enableXOF);
cshakePers(this, { NISTfn: 'TupleHash', personalization: opts.personalization });
// Change update after cshake processed
this.update = (data: Input) => {
data = toBytes(data);
abytes(data);
super.update(leftEncode(_8n * BigInt(data.length)));
super.update(data);
return this;
};
}
protected finish(): void {
if (!this.finished)
super.update(rightEncode(this.enableXOF ? 0 : _8n * BigInt(this.outputLen))); // outputLen in bits
super.finish();
}
_cloneInto(to?: TupleHash): TupleHash {
to ||= new TupleHash(this.blockLen, this.outputLen, this.enableXOF);
return super._cloneInto(to) as TupleHash;
}
clone(): TupleHash {
return this._cloneInto();
}
}
function genTuple(blockLen: number, outputLen: number, xof = false) {
const tuple = (messages: Input[], opts?: cShakeOpts): Uint8Array => {
const h = tuple.create(opts);
for (const msg of messages) h.update(msg);
return h.digest();
};
tuple.create = (opts: cShakeOpts = {}) =>
new TupleHash(blockLen, chooseLen(opts, outputLen), xof, opts);
return tuple;
}
/** 128-bit TupleHASH. */
export const tuplehash128: ITupleHash = /* @__PURE__ */ (() => genTuple(168, 128 / 8))();
/** 256-bit TupleHASH. */
export const tuplehash256: ITupleHash = /* @__PURE__ */ (() => genTuple(136, 256 / 8))();
/** 128-bit TupleHASH XOF. */
export const tuplehash128xof: ITupleHash = /* @__PURE__ */ (() => genTuple(168, 128 / 8, true))();
/** 256-bit TupleHASH XOF. */
export const tuplehash256xof: ITupleHash = /* @__PURE__ */ (() => genTuple(136, 256 / 8, true))();
// ParallelHash (same as K12/M14, but without speedup for inputs less 8kb, reduced number of rounds and more simple)
type ParallelOpts = cShakeOpts & { blockLen?: number };
export class ParallelHash extends Keccak implements HashXOF<ParallelHash> {
private leafHash?: Hash<Keccak>;
protected leafCons: () => Hash<Keccak>;
private chunkPos = 0; // Position of current block in chunk
private chunksDone = 0; // How many chunks we already have
private chunkLen: number;
constructor(
blockLen: number,
outputLen: number,
leafCons: () => Hash<Keccak>,
enableXOF: boolean,
opts: ParallelOpts = {}
) {
super(blockLen, 0x1f, outputLen, enableXOF);
cshakePers(this, { NISTfn: 'ParallelHash', personalization: opts.personalization });
this.leafCons = leafCons;
let { blockLen: B } = opts;
B ||= 8;
anumber(B);
this.chunkLen = B;
super.update(leftEncode(B));
// Change update after cshake processed
this.update = (data: Input) => {
data = toBytes(data);
abytes(data);
const { chunkLen, leafCons } = this;
for (let pos = 0, len = data.length; pos < len; ) {
if (this.chunkPos == chunkLen || !this.leafHash) {
if (this.leafHash) {
super.update(this.leafHash.digest());
this.chunksDone++;
}
this.leafHash = leafCons();
this.chunkPos = 0;
}
const take = Math.min(chunkLen - this.chunkPos, len - pos);
this.leafHash.update(data.subarray(pos, pos + take));
this.chunkPos += take;
pos += take;
}
return this;
};
}
protected finish(): void {
if (this.finished) return;
if (this.leafHash) {
super.update(this.leafHash.digest());
this.chunksDone++;
}
super.update(rightEncode(this.chunksDone));
super.update(rightEncode(this.enableXOF ? 0 : _8n * BigInt(this.outputLen))); // outputLen in bits
super.finish();
}
_cloneInto(to?: ParallelHash): ParallelHash {
to ||= new ParallelHash(this.blockLen, this.outputLen, this.leafCons, this.enableXOF);
if (this.leafHash) to.leafHash = this.leafHash._cloneInto(to.leafHash as Keccak);
to.chunkPos = this.chunkPos;
to.chunkLen = this.chunkLen;
to.chunksDone = this.chunksDone;
return super._cloneInto(to) as ParallelHash;
}
destroy(): void {
super.destroy.call(this);
if (this.leafHash) this.leafHash.destroy();
}
clone(): ParallelHash {
return this._cloneInto();
}
}
function genPrl(
blockLen: number,
outputLen: number,
leaf: ReturnType<typeof gencShake>,
xof = false
) {
const parallel = (message: Input, opts?: ParallelOpts): Uint8Array =>
parallel.create(opts).update(message).digest();
parallel.create = (opts: ParallelOpts = {}) =>
new ParallelHash(
blockLen,
chooseLen(opts, outputLen),
() => leaf.create({ dkLen: 2 * outputLen }),
xof,
opts
);
return parallel;
}
/** 128-bit ParallelHash. In JS, it is not parallel. */
export const parallelhash128: IParHash = /* @__PURE__ */ (() => genPrl(168, 128 / 8, cshake128))();
/** 256-bit ParallelHash. In JS, it is not parallel. */
export const parallelhash256: IParHash = /* @__PURE__ */ (() => genPrl(136, 256 / 8, cshake256))();
/** 128-bit ParallelHash XOF. In JS, it is not parallel. */
export const parallelhash128xof: IParHash = /* @__PURE__ */ (() =>
genPrl(168, 128 / 8, cshake128, true))();
/** 256-bit ParallelHash. In JS, it is not parallel. */
export const parallelhash256xof: IParHash = /* @__PURE__ */ (() =>
genPrl(136, 256 / 8, cshake256, true))();
// Should be simple 'shake with 12 rounds', but no, we got whole new spec about Turbo SHAKE Pro MAX.
export type TurboshakeOpts = ShakeOpts & {
D?: number; // Domain separation byte
};
const genTurboshake = (blockLen: number, outputLen: number) =>
createXOFer<HashXOF<Keccak>, TurboshakeOpts>((opts: TurboshakeOpts = {}) => {
const D = opts.D === undefined ? 0x1f : opts.D;
// Section 2.1 of https://datatracker.ietf.org/doc/draft-irtf-cfrg-kangarootwelve/
if (!Number.isSafeInteger(D) || D < 0x01 || D > 0x7f)
throw new Error('invalid domain separation byte must be 0x01..0x7f, got: ' + D);
return new Keccak(blockLen, D, opts.dkLen === undefined ? outputLen : opts.dkLen, true, 12);
});
/** TurboSHAKE 128-bit: reduced 12-round keccak. */
export const turboshake128: CHashXO = /* @__PURE__ */ genTurboshake(168, 256 / 8);
/** TurboSHAKE 256-bit: reduced 12-round keccak. */
export const turboshake256: CHashXO = /* @__PURE__ */ genTurboshake(136, 512 / 8);
// Kangaroo
// Same as NIST rightEncode, but returns [0] for zero string
function rightEncodeK12(n: number | bigint): Uint8Array {
n = BigInt(n);
const res: number[] = [];
for (; n > 0; n >>= _8n) res.unshift(Number(n & _ffn));
res.push(res.length);
return Uint8Array.from(res);
}
export type KangarooOpts = { dkLen?: number; personalization?: Input };
const EMPTY_BUFFER = /* @__PURE__ */ Uint8Array.of();
export class KangarooTwelve extends Keccak implements HashXOF<KangarooTwelve> {
readonly chunkLen = 8192;
private leafHash?: Keccak;
protected leafLen: number;
private personalization: Uint8Array;
private chunkPos = 0; // Position of current block in chunk
private chunksDone = 0; // How many chunks we already have
constructor(
blockLen: number,
leafLen: number,
outputLen: number,
rounds: number,
opts: KangarooOpts
) {
super(blockLen, 0x07, outputLen, true, rounds);
this.leafLen = leafLen;
this.personalization = abytesOrZero(opts.personalization);
}
update(data: Input): this {
data = toBytes(data);
abytes(data);
const { chunkLen, blockLen, leafLen, rounds } = this;
for (let pos = 0, len = data.length; pos < len; ) {
if (this.chunkPos == chunkLen) {
if (this.leafHash) super.update(this.leafHash.digest());
else {
this.suffix = 0x06; // Its safe to change suffix here since its used only in digest()
super.update(Uint8Array.from([3, 0, 0, 0, 0, 0, 0, 0]));
}
this.leafHash = new Keccak(blockLen, 0x0b, leafLen, false, rounds);
this.chunksDone++;
this.chunkPos = 0;
}
const take = Math.min(chunkLen - this.chunkPos, len - pos);
const chunk = data.subarray(pos, pos + take);
if (this.leafHash) this.leafHash.update(chunk);
else super.update(chunk);
this.chunkPos += take;
pos += take;
}
return this;
}
protected finish(): void {
if (this.finished) return;
const { personalization } = this;
this.update(personalization).update(rightEncodeK12(personalization.length));
// Leaf hash
if (this.leafHash) {
super.update(this.leafHash.digest());
super.update(rightEncodeK12(this.chunksDone));
super.update(Uint8Array.from([0xff, 0xff]));
}
super.finish.call(this);
}
destroy(): void {
super.destroy.call(this);
if (this.leafHash) this.leafHash.destroy();
// We cannot zero personalization buffer since it is user provided and we don't want to mutate user input
this.personalization = EMPTY_BUFFER;
}
_cloneInto(to?: KangarooTwelve): KangarooTwelve {
const { blockLen, leafLen, leafHash, outputLen, rounds } = this;
to ||= new KangarooTwelve(blockLen, leafLen, outputLen, rounds, {});
super._cloneInto(to);
if (leafHash) to.leafHash = leafHash._cloneInto(to.leafHash);
to.personalization.set(this.personalization);
to.leafLen = this.leafLen;
to.chunkPos = this.chunkPos;
to.chunksDone = this.chunksDone;
return to;
}
clone(): KangarooTwelve {
return this._cloneInto();
}
}
/** KangarooTwelve: reduced 12-round keccak. */
export const k12: CHashO = /* @__PURE__ */ (() =>
createOptHasher<KangarooTwelve, KangarooOpts>(
(opts: KangarooOpts = {}) => new KangarooTwelve(168, 32, chooseLen(opts, 32), 12, opts)
))();
/** MarsupilamiFourteen: reduced 14-round keccak. */
export const m14: CHashO = /* @__PURE__ */ (() =>
createOptHasher<KangarooTwelve, KangarooOpts>(
(opts: KangarooOpts = {}) => new KangarooTwelve(136, 64, chooseLen(opts, 64), 14, opts)
))();
/**
* More at https://github.com/XKCP/XKCP/tree/master/lib/high/Keccak/PRG.
*/
export class KeccakPRG extends Keccak {
protected rate: number;
constructor(capacity: number) {
anumber(capacity);
// Rho should be full bytes
if (capacity < 0 || capacity > 1600 - 10 || (1600 - capacity - 2) % 8)
throw new Error('invalid capacity');
// blockLen = rho in bytes
super((1600 - capacity - 2) / 8, 0, 0, true);
this.rate = 1600 - capacity;
this.posOut = Math.floor((this.rate + 7) / 8);
}
keccak(): void {
// Duplex padding
this.state[this.pos] ^= 0x01;
this.state[this.blockLen] ^= 0x02; // Rho is full bytes
super.keccak();
this.pos = 0;
this.posOut = 0;
}
update(data: Input): this {
super.update(data);
this.posOut = this.blockLen;
return this;
}
feed(data: Input): this {
return this.update(data);
}
protected finish(): void {}
digestInto(_out: Uint8Array): Uint8Array {
throw new Error('digest is not allowed, use .fetch instead');
}
fetch(bytes: number): Uint8Array {
return this.xof(bytes);
}
// Ensure irreversibility (even if state leaked previous outputs cannot be computed)
forget(): void {
if (this.rate < 1600 / 2 + 1) throw new Error('rate is too low to use .forget()');
this.keccak();
for (let i = 0; i < this.blockLen; i++) this.state[i] = 0;
this.pos = this.blockLen;
this.keccak();
this.posOut = this.blockLen;
}
_cloneInto(to?: KeccakPRG): KeccakPRG {
const { rate } = this;
to ||= new KeccakPRG(1600 - rate);
super._cloneInto(to);
to.rate = rate;
return to;
}
clone(): KeccakPRG {
return this._cloneInto();
}
}
/** KeccakPRG: Pseudo-random generator based on Keccak. https://keccak.team/files/CSF-0.1.pdf */
export const keccakprg = (capacity = 254): KeccakPRG => new KeccakPRG(capacity);